Skip to main content
Log in

Cold-Workability and Microstructure Change with β-Phase Stability in High-Strength Ti-Mn Binary Alloys

  • Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of manganese content (Mn-content) on the beta phase (β-phase) stability, plastic deformability and mechanical behavior of titanium and (8–18 wt.%) manganese low-cost alloys were investigated. The alloys were produced by electric-arc melting under inert argon atmosphere. Microstructure change during cold rolling was evaluated through x-ray diffraction, scanning electron microscope, transmission electron microscope and electron backscatter diffraction in solution-treated and cold-deformed conditions. The β-phase was predominant in all the alloys under study in addition to very fine ω-phase precipitates, especially in the lower Mn-content alloys. Cold workability of the alloys was initially increased in the low Mn-content alloys and then decreased dramatically in the higher Mn-content alloys. The deformation mechanisms were a combination between dislocation slipping and twinning, with a predominance of twinning in the low Mn-content and slipping in the high Mn-content alloys. Tensile test results showed that an ultra-high-strength alloy of about 1950 MPa was obtained in the high Mn-content alloys after cold deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Lütjering and J.C. Williams, Titanium, 2nd ed. (Berlin: Springer, 2003), pp. 8–12.

    Book  Google Scholar 

  2. M.J. Donachie, Titanium: A Technical Guide, 2nd ed. (Ohio: ASM international, 2000), pp. 9–16.

    Google Scholar 

  3. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, 1st ed. (Weinheim: Wiley-VCH, 2005), pp. 37–42.

    Google Scholar 

  4. O.M. Ivasishin, P.E. Markovsky, S.L. Semiatin, and C.H. Ward, Mater. Sci. Eng. A 405, 296 (2005).

    Article  Google Scholar 

  5. H. Matsumoto, S. Watanabe, and S. Hanada, J. Alloys Compd. 439, 146 (2007).

    Article  Google Scholar 

  6. O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L. Semiatin, C.H. Ward, and S. Fox, J. Alloys Compd. 457, 296 (2008).

    Article  Google Scholar 

  7. S. Zaefferer, Mater. Sci. Eng. A 344, 20 (2002).

    Article  Google Scholar 

  8. J. Hwang, S. Kuramoto, T. Furuta, K. Nishino, and T. Saito, J. Mater. Eng. Perform. 14, 747 (2005).

    Article  Google Scholar 

  9. W.D. Callister and D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, 5th ed. (New York: Wiley, 2012), pp. 206–212.

    Google Scholar 

  10. W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction, 8th ed. (New York: Wiley, 2010), pp. 211–218.

    Google Scholar 

  11. Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu, and D. Zhang, Mater. Des. 32, 2934 (2011).

    Article  Google Scholar 

  12. Y. Okazaki, S. Rao, S. Asao, T. Tateishi, S. Katsuda, and Y. Furuki, Mater. Trans. JIM 39, 1053 (1998).

    Article  Google Scholar 

  13. S. Dai, Y. Wang, F. Chen, X. Yu, and Y. Zhang, Mater. Sci. Eng. A 575, 35 (2013).

    Article  Google Scholar 

  14. K. Cho, M. Niinomi, M. Nakai, H. Liu, P.F. Santos, Y. Itoh, M. Ikeda, M.A.H. Gepreel, and T. Narushima, J. Alloys Compd. 664, 272 (2016).

    Article  Google Scholar 

  15. M.K. Gouda, K. Nakamura, and M.A.H. Gepreel, J. Appl. Phys. 117, 214905 (2015).

    Article  Google Scholar 

  16. R. Boyer, G. Welsch, and E.W. Collings, Materials Properties Handbook: Titanium Alloys, 4th Pr (Ohio: ASM international, 2007), pp. 755–756.

    Google Scholar 

  17. M.K. Gouda, K. Nakamura, and M.A.H. Gepreel, Key Eng. Mater. 705, 214 (2016).

    Article  Google Scholar 

  18. M. Abdel-Hady, Texturing tendency in β-type Ti-alloys.Recent Developments in the Study of Recrystallization, ed. P. Wilson (London: IntechOpen, 2013), p. 117.

    Google Scholar 

  19. M. Abdel-Hady and M. Morinaga, Int. J. Mod. Phys. B 23, 1559 (2009).

    Article  Google Scholar 

  20. M. Abdel-Hady, K. Hinoshita, H. Fuwa, Y. Murata, and M. Morinaga, Mater. Sci. Eng. A 480, 167 (2008).

    Article  Google Scholar 

  21. H. Liu, M. Niinomi, M. Nakai, and K. Cho, Acta Biomater. 24, 361 (2015).

    Article  Google Scholar 

  22. E. Bertrand, P. Castany, I. Péron, and T. Gloriant, Scr. Mater. 64, 1110 (2011).

    Article  Google Scholar 

  23. T. Furuta, S. Kuramoto, J. Hwang, K. Nishino, and T. Saito, Mater. Trans. 46, 3001 (2005).

    Article  Google Scholar 

  24. I. Weiss and S. Semiatin, Mater. Sci. Eng. A 263, 243 (1999).

    Article  Google Scholar 

  25. M. Ikeda, M. Ueda, R. Matsunaga, M. Ogawa, and M. Niinomi, Mater. Trans. 50, 2737 (2009).

    Article  Google Scholar 

  26. Y. Yang, G.P. Li, G.M. Cheng, Y.L. Li, and K. Yang, Appl. Phys. Lett. 94, 061901 (2009).

    Article  Google Scholar 

  27. T. Inamura, Y. Fukui, H. Hosoda, K. Wakashima, and S. Miyazaki, Mater. Sci. Forum 475–479, 2323 (2005).

    Article  Google Scholar 

  28. H.Y. Kim, T. Sasaki, K. Okutsu, J.I. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Acta Mater. 54, 423 (2006).

    Article  Google Scholar 

  29. L. Wang, W. Lu, J. Qin, F. Zhang, and D. Zhang, Mater. Sci. Eng. A 491, 372 (2008).

    Article  Google Scholar 

  30. T. Inamura, Y. Kinoshita, J.I. Kim, H.Y. Kim, H. Hosoda, K. Wakashima, and S. Miyazaki, Mater. Sci. Eng. A 438–440, 865 (2006).

    Article  Google Scholar 

  31. G.P. Tiwari and R.V. Ramanujan, J. Mater. Sci. 36, 271 (2001).

    Article  Google Scholar 

  32. S. Kuramoto, T. Furuta, J.H. Hwang, K. Nishino, and T. Saito, Metall. Mater. Trans. A 37, 657 (2006).

    Article  Google Scholar 

  33. T.-K. Jung, S. Semboshi, N. Masahashi, and S. Hanada, Mater. Sci. Eng. C 33, 1629 (2013).

    Article  Google Scholar 

  34. J.W. Lu, Y.Q. Zhao, P. Ge, H.Z. Niu, Y.S. Zhang, W. Zhang, and P.X. Zhang, Mater. Sci. Eng. A 621, 182 (2015).

    Article  Google Scholar 

  35. R. Jing, S.X. Liang, C.Y. Liu, M.Z. Ma, and R.P. Liu, Mater. Des. 52, 981 (2013).

    Article  Google Scholar 

  36. F.H. Froes, Titanium: Physical Metallurgy, Processing, and Applications, 1st ed. (Ohio: ASM international, 2015), pp. 59–62.

    Google Scholar 

  37. H. Liu, M. Niinomi, M. Nakai, J. Hieda, and K. Cho, J. Mech. Behav. Biomed. Mater. 30, 205 (2014).

    Article  Google Scholar 

  38. M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, and M. Ogawa, Mater. Trans. 50, 2716 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ministry of Higher Education (MoHE) of Egypt for providing a scholarship to conduct this study as well as the Japan International Cooperation Agency (JICA). This work is in the frame of the joint ASRT/DST research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed K. Gouda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouda, M.K., Gepreel, M.A.H., Yamanaka, K. et al. Cold-Workability and Microstructure Change with β-Phase Stability in High-Strength Ti-Mn Binary Alloys. JOM 71, 3590–3599 (2019). https://doi.org/10.1007/s11837-019-03690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03690-7

Navigation